ON Minimal λ^* -Open Sets

Sarhad Faiq Namiq

Abstract. In this paper, we introduce and discuss minimal λ^* -open sets in topological spaces. We establish some basic properties of minimal λ^* -open sets and provide an example to illustrate that minimal λ^* -open sets are independent of minimal open sets. we obtain an application of a theory of minimal λ^* -open sets and we defined a λ^* -locally finite space.

Index Terms — s-operation, λ^* – open, minimal λ^* -open sets, $\lambda - T_{1/2}$ space , λ^* -locally finite space.

1. Introduction

The study of semi open sets in topological space was initiated by Levine [9]. The concept of operation γ was initiated by S. Kasahara [7]. He also introduced γ -closed graph of a function. Using this operation, H. Ogata[8] introduced the concept of γ open sets and investigated the related topological properties of the associated topology τ_{γ} and τ . He further investigated general operator approaches of close graph of mappings. Further S. Hussain and B. Ahmad [4] continued studying the properties of γ -open(γ -closed) sets. In 2009, B. Ahmad and S. Hussain [5], introduced the concept of minimal gamma γ -open sets. In 2011[1] (respt. in 2013[2]) Alias B. Khalaf and Sarhad Faiq Namiq defined an operation λ called s-operation and defined and investigated several properties of λ -regular, λ -open, λ -identity, λ -monotone, λ -idempotent and λ -additive operations on the family of semi open sets in topological spaces. They defined λ^* open set [6] which is equivalent to λ -open set[1] and λ_s - open set[2] by using s-operation. They [6] defined and investigated several properties of λ^* -derived, λ^* - interior and λ^* -closure points in Topological Spaces. In this paper, we introduce and discuss minimal λ^* -open sets in topological spaces.

We establish some basic properties of minimal λ^* -open sets and provide an example to illustrate that minimal λ^* -open sets are independent of minimal open sets.

First, we recall some definitions and results used in this paper. We shall write a space in place of a topological space.

2. Preliminaries

Throughout, *X* denote topological spaces. Let *A* be a subset of *X*, then the closure and the interior of *A* are denoted by Cl(A) and Int(A) respectively. A subset *A* of a topological space (X, τ) is said to be semi open [9] if $A \subseteq Cl(Int(A))$. The complement of a semi open set is said to be semi closed [9]. The family of all semi open (resp. semi closed) sets in a topological space (X, τ) is denoted by $SO(X, \tau)$ or SO(X) (resp. $SC(X, \tau)$ or SC(X)). We consider λ as a function defined on SO(X) into P(X) and $\lambda: SO(X) \rightarrow P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each nonempty semi open set *V*. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ .

Definition 2.1.[6] Let (X, τ) be a topological space and $\lambda: SO(X) \longrightarrow P(X)$ be an s-operation, then a subset *A* of *X* is called a λ^* -open set which is equivalent to λ –open set[**1**] and λ_s open set[**2**] if for each $x \in A$ there exists a semi open set *U* such that $x \in U$ and $\lambda(U) \subseteq A$.

The complement of a λ^* -open setis said to be λ^* -closed. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda}(X, \tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X, \tau)$ or $SC_{\lambda}(X)$).

Author is currently one of the staff members at Department of Mathematics, Faculty of Education and School of Science, University of Garmyan, Kurdistan-Region, Iraq E-mail address: sarhad1983@gmail.com

Proposition 2.2.[1]. For a topological space (X, τ) , $SO_{\lambda}(X) \subseteq SO(X)$.

The following examples show that the converse of the above proposition may not be true in general.

Example 2.3.[1]. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, X\}$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ as $\lambda(A) = A$ if $b \in A$ and $\lambda(A) = X$ otherwise. Here, we have $\{a, c\}$ is semi open set but it is not λ^* -open.

Definition 2.4. [1]. Let (X, τ) be a space, an s-operation λ is said to be s-regular if for every semi open sets U and V of $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.5. [6]. Let (X, τ) be a topological space and let *A* be a subset of *X*. Then:

- (1) The λ^* -closure of $A(\lambda^*Cl(A) = \lambda Cl(A))$ is the intersection of all λ^* -closed sets containing A.
- (2) The λ*-interior of A (λ*Int(A) = λ Int(A)) is the union of all λ*-open sets of X contained in A.

Proposition 2.6. [6]. For each point $x \in X, x \in \lambda^* Cl(A) = \lambda Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in SO_{\lambda}(X)$ such that $x \in V$.

Proposition 2.7. [3]. Let $\{A_{\alpha}\}_{\alpha \in I}$ be any collection of λ^* -open sets in a topological space (X, τ) , then $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ^* -open set.

Proposition 2.8. [2]. Let λ be a s-regular s-operation. If *A* and *B* are λ^* -open sets in *X*, then $A \cap B$ is also a λ^* -open set.

3. Minimal λ^* -open sets

Definition 3.1. Let *X* be a space and $A \subseteq X$ a λ^* -open set. Then *A* is called a minimal λ^* -open set if ϕ and *A* are the only λ^* -open subsets of *A*.

The following Example shows that minimal λ^* -open sets and minimal open sets are independent of each other.

Example 3.2. Let $X = \{a, b, c\}$, and

 $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ as $\lambda(A) = A$ if $A = \{a, c\}$ and $\lambda(A) = X$ otherwise. The λ^* -open sets are $\phi, \{a, c\}$ and X. Here $\{a\}$ is minimal open set which is not minimal λ^* -open. Also $\{a, c\}$ is minimal λ^* -open set which is not minimal open.

Proposition 3.3. Let (X, τ) be a topological space. Then:

- (1) Let *A* be a minimal λ^* -open set and *B* a λ^* -open set. Then $A \cap B = \phi$ or $A \subseteq B$, where λ is λ -regular.
- (2) Let B and C be minimal λ^* -open sets. Then $B \cap C = \phi$ or B = C, where λ is λ -regular.

Proof. (1) Let *B* be a λ^* -open set such that $A \cap B \neq \phi$. Since *A* is a minimal λ^* -open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$.

(2) If $A \cap B \neq \phi$, then we see that $B \subseteq C$ and $C \subseteq B$ by (1). Therefore B = C.

Proposition 3.4. Let A be a minimal λ^* -open set. If x is an element of A, then $A \subseteq B$ for any λ^* -open neighborhood B of x, where λ is λ -regular.

Proof. Let *B* be a λ^* -open neighborhood of *x* such that $A \not\subset B$. Since where λ is λ –regular operation, then $A \cap B$ is λ^* -open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that *A* is a minimal λ^* -open set.

Proposition 3.5. Let A be a minimal λ^* -open set. Then for any element x of A, $A = \bigcap \{B: B \text{ is } \lambda^*$ -open neighborhood of x }, where λ is λ -regular.

Proof. By Proposition 3.4, and the fact that A is λ^* -open neighborhood of x, we have $A \subseteq \bigcap \{ B: B \text{ is } \lambda^* \text{-open neighborhood of } x \} \subseteq A$. Therefore we have the result.

Proposition 3.6. Let *A* be a minimal λ^* -open set in *X* and $x \in X$ such that $x \notin A$. Then for any λ^* -open neighborhood *C* of *x*, $C \cap A = \phi$ or $A \subseteq C$, where λ is λ -regular.

Proof. Since *C* is a λ^* -open set, we have the result by Proposition 3.3.

Corollary 3.7. Let A be a minimal λ^* -open set in X and $x \in X$ such that $x \notin A$. Define $A = \bigcap \{ B : B \text{ is } \lambda^*$ -open neighborhood of x }. Then $A_x \cap A = \phi$ or $A \subseteq A_x$, where λ is λ -regular.

Proof. If $A \subseteq B$ for any λ^* -open neighborhood *B* of *x*, then $A \subseteq \bigcap \{ B: B \text{ is } \lambda^* \text{-open neighborhood of } x \}$. Therefore $A \subseteq A_x$. Otherwise there exists a λ^* -open neighborhood *B* of *x* such that $B \cap A = \phi$. Then we have $A_x \cap A = \phi$.

Corollary 3.8. If *A* is a nonempty minimal λ^* -open set of *X*, then for a nonempty subset *C* of *A*, $A \subseteq \lambda^*Cl(C)$, where λ is λ -regular. **Proof.** Let *C* be any nonempty subset of *A*. Let $y \in A$ and *B* be any λ^* -open neighborhood of *y*. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \phi$ and hence $y \in \lambda^*Cl(C)$. This implies that $A \cap \lambda^*Cl(C)$. This completes the proof.

Proposition 3.9. Let *A* be a nonempty λ^* -open subset of a space *X*. If $A \subseteq \lambda^*Cl(C)$, then $\lambda^*Cl(A) = \lambda^*Cl(C)$, for any nonempty subset *C* of *A*.

Proof. For any nonempty subset *C* of *A*, we have $\lambda^*Cl(C) \subseteq \lambda^*Cl(A)$. On the other hand, by supposition we see $\lambda^*Cl(A) = \lambda^*Cl(\lambda^*Cl(C)) = \lambda^*Cl(C)$ implies $\lambda^*Cl(A) \subseteq \lambda^*Cl(C)$.

Therefore we have $\lambda^*Cl(A) = \lambda^*Cl(C)$ for any nonempty subset *C* of *A*.

Proposition 3.10. Let *A* be a nonempty λ^* -open subset of a space *X*. If $\lambda^*Cl(A) = \lambda^*Cl(C)$, for any nonempty subset *C* of *A*, then *A* is a minimal λ^* -open set.

Proof. Suppose that *A* is not a minimal λ^* -open set. Then there exists a nonempty λ^* -open set *B* such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda^*Cl(\{x\}) \subseteq X \setminus B$ implies that $\lambda^*Cl(\{x\}) = \lambda^*Cl(A)$. This contradiction proves the proposition

Combining Corollary 3.8 and Propositions 3.9 and 3.10, we have:

Theorem 3.11. Let *A* be a nonempty λ^* -open subset of space *X*. Then the following are equivalent:

- (1) *A* is minimal λ^* -open set, where λ is λ -regular.
- (2) For any nonempty subset *C* of *A*, $A \subseteq \lambda^*Cl(C)$.

(3) For any nonempty subset C of A, $\lambda^*Cl(A) = \lambda^*Cl(C)$.

4. Finite *λ**-open sets

In this section, we study some properties of minimal λ^* -open sets in finite λ^* -open sets and λ^* -locally finite spaces.

Proposition 4.1. Let (X, τ) be a topological space and $\phi \neq B$ a finite λ^* -open set in *X*. Then there exists at least one (finite) minimal λ^* -open set *A* such that $A \subseteq B$.

Proof. Suppose that *B* is a finite λ^* -open set in *X*. Then we have the following two possibilities:

- (1) *B* is a minimal λ^* -open set.
- (2) *B* is not a minimal λ^* -open set.

In case (1), if we choose B = A, then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) λ^* open set B_1 which is properly contained in B. If B_1 is minimal λ^* open, we take $A = B_1$. If B_1 is not a minimal λ^* -open set, then there exists a nonempty (finite) λ^* -open set B_2 such that $B_2 \subseteq B_1 \subseteq B$. We continue this process and have a sequence of λ^* open sets ... $\subseteq B_m \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq B$. Since B is a finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal λ^* -open set B_k such that $B_k = A$. This completes the proof.

Definition 4.2. A space *X* is said to be a λ^* -locally finite space, if for each $x \in X$ there exists a finite λ^* -open set *A* in *X* such that $x \in A$.

Corollary 4.3. Let X be a λ^* -locally finite space and B a nonempty λ^* -open set. Then there exists at least one (finite) minimal λ^* -open set A such that $A \subseteq B$, where λ is λ -regular.

Proof. Since *B* is a nonempty set, there exists an element *x* of *B*. Since *X* is a λ^* -locally finite space, we have a finite λ^* -open set B_x such that $x \in B_x$. Since $B \cap B_x$ is a finite λ^* -open set, we get a minimal λ^* -open set *A* such that $A \subseteq B \cap B_x \subseteq B$ by Proposition 4.1.

Proposition 4.4. Let X be a space and for any $\alpha \in I$, B_{α} a λ^* open set and $\phi \neq A$ a finite λ^* -open set. Then $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a
finite λ^* -open set, where λ is λ -regular.

Proof. We see that there exists an integer *n* such that $A \cap$

 $(\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{n} B_{\alpha i})$ and hence we have the result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5. Let *X* be a space and for any $\alpha \in I$, B_{α} a λ^* -open set and for any $\beta \in J$, B_{β} a nonempty finite λ^* -open set. Then $(\bigcup_{\beta \in J} B_{\beta}) \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a λ^* open set, where λ is λ -regular.

5. Applications

Let *A* be a nonempty finite λ^* -open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if λ is λ -regular, then there exists a natural number *m* such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal λ^* -open sets in *A* satisfying the following two conditions:

(1) For any ι, n with $1 \le \iota, n \le m$ and $\iota \ne n, A_{\iota} \cap A_{n} = \phi$.

(2) If C is a minimal λ^* -open set in A, then there exists ι with $1 \subseteq \iota \subseteq m$ such that $C = A_{\iota}$.

Theorem 5.1. Let *X* be a space and $\phi \neq A$ a finite λ^* -open set such that *A* is not a minimal λ^* -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ^* -open sets in *A* and $y \in A \setminus (A_1 \cup A_2 \cup$ $... \cup A_m)$. Define $A_y = \bigcap \{B: B \text{ is } \lambda^*\text{-open neighborhood of } x \}$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that A_k is contained in A_y , where λ is λ -regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1,2,3,...,m\}$, A_k is not contained in A_y . By Corollary 3.7, for any minimal λ^* -open set A_k in A, $A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite λ^* -open set. Therefore by Proposition 4.1, there exists a minimal λ^* -open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal λ^* -open set in A. By supposition, for any minimal λ^* -open set A_k , we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore for any natural number $k \in \{1,2,3,...,m\}, C \neq A_k$. This contradicts our assumption. Hence the proof.

Proposition 5.2.Let *X* be a space and $\phi \neq A$ be a finite λ^* -open set which is not a minimal λ^* -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ^* -open sets in *A* and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$, such that for any λ^* -open neighborhood B_y of y, A_k is contained in B_y , where λ is λ -regular.

Proof. This follows from Theorem 5.1, as $\bigcap \{B: B \text{ is } \lambda^*\text{-open of } y\} \subseteq B_y$. Hence the proof.

Theorem 5.3. Let X be a space and $\phi \neq A$ be a finite λ^* -open set which is not a minimal λ^* -open set. Let $\{A_1, A_2, \dots, A_m\}$ be the class of all minimal λ^* -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup \dots \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, \dots, m\}$, such that $y \in \lambda^* Cl(A_k)$. where λ is λ -regular.

Proof. It follows from Proposition 5.2, that there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that $A_k \subseteq B$ for any λ^* -open neighborhood *B* of *y*. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \lambda^* Cl(A_k)$. This completes the proof.

Proposition 5.4. Let $\phi \neq A$ be a finite λ^* -open set in a space X and for each $k \in \{1, 2, 3, ..., m\}$, A_k is a minimal λ^* -open sets in A. If the class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ^* -open sets in A, then for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is λ -regular.

Proof. If *A* is a minimal λ^* -open set, then this is the result of Theorem 3.11 (2). Otherwise *A* is not a minimal λ^* -open set. If *x* is any element of $A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$, we have $x \in \lambda^*Cl(A_1) \cup \lambda^*Cl(A_2) \cup ... \cup \lambda^*Cl(A_m)$ by Theorem 5.3. Therefore $A \subseteq \lambda^*Cl(A_1) \cup \lambda^*Cl(A_2) \cup ... \cup \lambda^*Cl(A_m) = \lambda^*Cl(B_1) \cup \lambda^*Cl(B_2) \cup ... \cup \lambda^*Cl(B_m) = \lambda^*Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ by Theorem 3.11 (3).

Proposition 5.5. Let $\phi \neq A$ be a finite λ^* -open set and A_k is a minimal λ^* -open set in A, for each $k \in \{1, 2, 3, ..., m\}$. If for any $\phi \neq B_k \subseteq A_k, A \subseteq \lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ then $\lambda^* Cl(A) = \lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$.

Proof. For any $\phi \neq B_k \subseteq A_k$ with $k \in \{1, 2, 3, ..., m\}$, we have $\lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \subseteq \lambda^* Cl(A)$. Also, we have $\lambda^* Cl(A) \subseteq \lambda^* Cl(B_1) \cup \lambda^* Cl(B_2) \cup ... \cup \lambda^* Cl(B_m) = \lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. Therefore $\lambda^* Cl(A) = \lambda^* Cl(A) =$

 $\lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ for any nonempty subset B_k of A_k with $k \in \{1, 2, 3, ..., m\}$.

Proposition 5.6. Let $\phi \neq A$ be a finite λ^* -open set and for each $k \in \{1,2,3, ..., m\}, A_k$ is a minimal λ^* -open set in A. If for any $\phi \neq B_k \subseteq A_k, \lambda^*Cl(A) = \lambda^*Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, then the class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ^* -open sets in A. **Proof.** Suppose that C is a minimal λ^* -open set in A and $C \neq A_k$ for $k \in \{1,2,3, ..., m\}$, Then we have $C \cap \lambda^*Cl(A_k) = \phi$ for each $k \in \{1,2,3, ..., m\}$. It follows that any element of C is not contained in $\lambda^*Cl(A_1 \cup A_2 \cup ... \cup A_m)$. This is a contradiction to the fact that $C \subseteq A \subseteq \lambda^*Cl(A) = \lambda^*Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. This completes the proof.

Combining Proposition 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7. Let *A* be a nonempty finite λ^* -open set and A_k a minimal λ^* -open set in *A* for each $k \in \{1, 2, 3, ..., m\}$. Then the following three conditions are equivalent:

- (1) The class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ^* -open sets in A.
- (2) For any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda^* Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$.
- (3) For any $\phi \neq B_k \subseteq A_k$, $\lambda^*Cl(A) = \lambda^*Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is λ -regular.

[3] Alias B. Khalaf, Sarhad F. Namiq, Generalized λ -Closed Sets and (λ, γ)*-Continuous Functions, International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 ISSN 2229-5518.
[4] B. Ahmad and S. Hussain: Properties of γ-Operations on Topological Spaces, Aligarh Bull.Math. 22(1) (2003), 45-51.

[5] S. Hussain and B. Ahmad: On Minimal γ -Open Sets, Eur. J. Pure Appl. Maths., 2(3)(2009),338-351.

[6] Sarhad Faiq Namiq, $\lambda^* \cdot R_0$ and $\lambda^* \cdot R_1$ Spaces, Journal of Garmyan University Vol. 4, No. 3, 2014, ISSN 2310-0087. [7] S. Kasahara: Operation-Compact Spaces, Math. Japon., 24(1979), 97-105. [8] H. Ogata: Operations on Topological Spaces and

[8] H. Ogata: Operations on Topological Spaces and Associated Topology, Math. Japon., 36(1)(1991), 175-184.
[9] N. Levine, Semi-open sets and semi-continuity in topological

spaces, Amer. Math.Monthly, 70 (1)(1963), 36-41.

References

[1] Alias B. Khalaf and Sarhad F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).

[2] Alias B. Khalaf and Sarhad F. Namiq, λ_c -Open Sets and λ_c -

Separation Axioms in Topological Spaces, Journal of Advanced Studies in Topology Vol. 4, No.1, 2013, 150-158.

491